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Abstract. The problem of community detection in a network with fea-
tures at its nodes takes into account both the graph structure and node
features. The goal is to find relatively dense groups of interconnected
entities sharing some features in common. We apply the so-called data
recovery approach to the problem by combining the least-squares recov-
ery criteria for both, the graph structure and node features. In this way,
we obtain a new clustering criterion and a corresponding algorithm for
finding clusters/communities one-by-one. We show that our proposed
method is effective on real-world data, as well as on synthetic data in-
volving either only quantitative features or only categorical attributes or
both. Our algorithm appears competitive against state-of-the-art algo-
rithms.

Keywords: Attributed Network · Cluster Analysis · Community Detec-
tion · Least Squares Criterion · One by One Clustering

1 Introduction: Previous work and motivation

Community detection is a popular field of data science with various applications
ranging from sociology to biology to computer science. Recently this concept
was extended from flat and weighted networks to networks with a feature space
associated with its nodes, these are referred to as attributed (or feature-rich)
networks [6]. A community is a group, or cluster, of densely interconnected nodes
that are similar in the feature space too.

There have been published a number of papers proposing various approaches
to identifying communities in attributed networks (see recent reviews in [6]
and[3]). They naturally fall in three groups: (a) those heuristically transforming
the feature-based data to augment the network format, (b) those heuristically
convering the data to the features only format, and (c) those involving, usu-
ally, a probabilistic model of the phenomenon to apply the maximum likelihood
principle for estimating its parameters. A typical method within approach (a)
or (b) combines a number of heuristical approaches, thus involving a number of
unsubstantiated parameters which are rather difficult to systematize, the more
so to put to testing. Most interesting approaches in the modeling group (c) are
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represented by methods in [17] and [14]. The former statistically models inter-
relation between the network structure and node attributes, the latter involves
Bayesian inferences.

Our approach relates to that of modeling, except that we model the data
rather than the process of data generation. Specifically, our data-driven model
assumes a hidden partition of the node set in non-overlapping communities and
parameters encoding the average within-community link intensity and feature
central points. To find this partition and parameters, a least-squares data ap-
proximation criterion is defined. To fit this criterion, a greedy-wise procedure of
finding clusters one-by-one is applied. This approach as already proved successful
in application to both feature data only and network/ data only [10, 2].

The rest of the paper is organized as follows. We describe our model and
algorithm in Section 2. In Section 3, we describe the setting of our experiments.
In Section 4, we describe results of our experiments to validate our method and
compare it with competition. We draw conclusions in Section 5.

The authors are indebted to the anonymous reviewers whose comments helped
them to improve the presentation.

2 Least-squares criterion

Let us consider a dataset represented by two matrices: a symmetric N × N
network adjacency matrix P = (pij), where pij can be any reals, and by an
N × V entity-to-feature matrix Y = (yiv) with i ∈ I, I being an N -element
entity set.

We assume that there is a partition S = {S1, S2, ..., SK} of I in K non-
overlapping communities, a.k.a. clusters, with a binary membership vector sk =
(sik), k = 1, 2, ...,K, so that sik = 1 for i ∈ Sk, and sik = 0, otherwise. The
cluster Sk is assigned with a V -dimensional center vector ck = (ckv) and a
positive network intensity weight λk.

According to the least-squares principle, ”right” membership vectors sk, com-
munity centers ck and intensity weights λk are minimizers of the summary least-
squares criterion:

F (λk, sk, ck) = ρ

K∑
k=1

∑
iv

(yiv − ckvsik)2 + ξ

K∑
k=1

∑
ij

(pij − λksiksjk)2 (1)

The factors ρ and ξ in Eqn. (1) are expert-driven constants to balance the
two sources of data, i.e features and networks.

To use a one-by-one clustering strategy [11] here, let us denote an individ-
ual community by S; its center in feature space, by c; and the corresponding
intensity weight, by λ (just removing the index, k, for convenience). The extent
of fit between the community and the dataset will be the corresponding part of
criterion in (1):



One-by-One Community Detection 3

F (λ, c, s) = ρ
∑
i,v

(yiv − cvsi)2 + ξ
∑
i,j

(pij − λsisj)2 (2)

The problem: given matrices P = (pij) and Y = (yiv), find binary s, as well
as real-valued λ and c = (cv), minimizing criterion (2). It is easy to prove that
the optimal real-valued cv is equal to the within-S mean of feature v, and the
optimal intensity value λ is equal to the mean within-cluster link value:

cv =

∑
i∈S yiv

|S|
; λ =

∑
i,j∈S pij

|S|2
(3)

Criterion (2) can be further reformulated as:

F (s) = ρ
∑
i,v

y2iv − 2ρ
∑
i,v

yivcvsi + ρ
∑
v

c2v
∑
i

s2i

+ξ
∑
i,j

p2ij − 2ξλ
∑
i,j

pijsisj + ξλ2
∑
i

s2i
∑
j

s2j
(4)

The items T (Y ) =
∑

i,v yiv
2 and T (P ) =

∑
ij p

2
i,j in (4) express quadratic

scatters of data matrices Y and P , respectively. Using them, Eqn. (4) can be
reformulated as

F (s) = ρT (Y ) + ξT (P )−G(s) (5)

where

G(s) = 2ρ
∑
i,v

yivcvsi − ρ
∑
v

c2v
∑
i

s2i + 2ξλ
∑
i,j

pijsisj − ξλ2
∑
i

s2i
∑
j

s2j (6)

By putting the optimal values cv and λ from (3) into this expression, we
obtain a simpler expression for G(s)

G = ρ|S|
∑
v

c2v + ξλ
∑
ij

pijsisj (7)

Maximizing G in (7) is equivalent to minimizing criterion F in (2) because
of (5).

One can see that maximizing the first item in (7) requires obtaining a nu-
merous cluster (the greater the |S|, the better) which is as far away from the
space origin, 0, as possible (the greater the squared distance from 0, |

∑
v c

2
v|,

the better). The second item in the criterion (7) is proportional to the sum of
within-cluster links multiplied by the average within-cluster link λ. Maximizing
criterion (7), thus, should produce a large anomalous cluster of a high internal
density.

We employ a greedy heuristic: starting from arbitrary singleton S = i, the
seed, add entities one by one so that the increment of G in (7) is maximized. After
each adding, recompute optimal cv and λ. Halt when the increment becomes
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negative. After stopping, the last check is executed: Seed Relevance Check:
Remove the seed from the found cluster S. If the removal increases the cluster
contribution; this seed is extracted from the cluster.

We refer to this algorithm as Attributed Network Addition Clustering al-
gorithm, ANAC. Our community detection algorithm SEANAC below consecu-
tively applies ANAC to detect more than one community.

SEANAC: Sequential Extraction of Attributed Network Addition
Clusters

1. Initialization. Define J = I, the set of entities to which ANAC applies at
every iteration, and set cluster counter k = 1.

2. Define matrices YJ and PJ as parts of Y and P restricted at J . Apply
ANAC at J , denote the output cluster S as Sk, its center c as ck, the intensity
λ as λk and contribution G as Gk.

3. Redefine J by removing all the elements of Sk from it. If thus obtained J is
empty, stop. Set the current k as K and output all Sk, ck, λk, Gk, k = 1, 2, ...,K.
If not, add 1 to k, and go to 2.

The implementation of our proposed algorithm and other supplementary
materials can be found https://github.com/Sorooshi/SEANAC

3 Setting of experiments for validation and comparison
of SEANAC algorithm

3.1 Algorithms under comparison

We take two popular algorithms in the model-based approach, CESNA [17] and
SIAN [14], which have been extensively tested in computational experiments.
The author-made codes of the algorithms are publicly available in [9] and [12]
respectively.

3.2 Datasets: Real-world and synthetic

Real world datasets We take on five real-world data sets listed in table 1.
Malaria data set [7] The nodes are amino acid sequences containing six

highly variable regions (HVR) each. The edges are drawn between sequences
with similar HVRs number 6. In this data set, there are two nominal attributes

Table 1: Real world datasets under consideration. Symbols N, E, and F stand
for the number of nodes, the number of edges, and the number of node features,
respectively.

Name Nodes Edges Features Ground Truth

Malaria HVR6 [7] 307 6526 6 Cys Labels
Lawyers [8] 71 339 18 Derived out of office and status features

World Trade [15] 80 1000 16 Derived out of continent and structural world system features
Parliament [1] 451 11646 108 Political parties

COSN [4] 46 552 16 Region
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of nodes: Cys labels derived from of a highly variable region HVR6 (assumed
ground truth); and Cys-PoLV labels derived from the sequences adjacent to
regions HVR 5 and 6.

Lawyers dataset [8] The Lawyers dataset comes from a network study of
corporate law partnership that was carried out in a Northeastern US corpo-
rate law firm, referred to as SG & R, 1988-1991, in New England. There is a
friendship network between lawyers in the study. The features in this dataset
are: Status (partner, associate), Gender (man, woman), Office location (Boston,
Hartford, Providence), Years with the firm, Age, Practice (litigation, corporate),
Law school (Harvard or Yale, UCon., Other).

Most features are nominal. Quantitative features, ”Years with the firm” and
”Age”, have been converted to the nominal format, so that categories of ”Years
with the firm” are x <= 10, 10 < x < 20, and x >= 20; and categories of ”Age”
are x <= 40, 40 < x < 50, and x >= 50.

World-Trade dataset [15]
The World-Trade dataset contains data on trade between 80 countries in

1994. The link weights represent total imports by row-countries from column-
countries, in $ 1,000, for the class of commodities designated as ’miscellaneous
manufactures of metal’ to represent high technology products or heavy man-
ufacture. The weights for imports with values less than 1% of the country’s
total imports are zeroed. The node attributes are: Continent (Africa, Asia, Eu-
rope, North America, Oceania, South America) Structural World System Posi-
tion (Core, Semi-Periphery, Periphery), Gross Domestic Product per capita in $
(GDP p/c). The GDP feature is converted into a three-category nominal feature
according to the minima of its histogram, $ 4406.9 and $ 21574.5. The categories
are: ’Poor’ , ’Mid-Range’, and ’Wealthy’.

Parliament dataset [1] The nodes correspond to members of the French
Parliament. An edge is drawn if the corresponding MPs sign a bill together. The
features are the constituency of MPs and their political party.

Consulting Organisational Social Network (COSN) dataset [4] Nodes
in this network correspond to employees in a consulting company. The (asymmet-
ric) edges are formed in accordance with their replies to this question: ”Please
indicate how often you have turned to this person for information or advice
on work-related topics in the past three months”. The answers, coded by 0 (I
Do Not Know This Person), 1 (Never), 2 (Seldom), 3 (Sometimes), 4 (Often),
and 5 (Very Often), form the edge weights. Attributes: Organisational level (Re-
search Assistant, Junior Consultant, Senior Consultant, Managing Consultant,
Partner), Gender (Male, Female), Region (Europe, USA), Location (Boston,
London, Paris, Rome, Madrid, Oslo, Copenhagen).

Before applying SEANAC, all attribute categories are converted into 1/0
dummy variables which are considered quantitative. These datasets can be found
at public site https://github.com/Sorooshi/PhD-Datasets.

Generating synthetic data sets First of all, we specify the number of nodes
N , the number of features V , and the number of communities, K, in a dataset to
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be generated. As the number of parameters to control is rather high, we narrow
down the variation of our data generator by maintaining two types of settings
only, a small size network and a medium size network. For a small size setting,
we specify the values of the three parameters as follows: N = 200, V = 5, and
K = 5. For the medium size, N = 1000, V = 10, and K = 15.

Generating networks At given numbers of nodes, N , and communities K,
cardinalities of communities are defined uniformly randomly, up to a constraint
that no community may have less than a pre-specified number of nodes (in our
experiments, this is set to 30, so that probabilistic approaches are applicable),
and the total number of nodes in all the communities sums to N .

Given the community sizes, we populate them with nodes, that are spec-
ified just by indices. Then we specify two probability values, p and q. Every
within-community edge is drawn with the probability p, independently of other
edges. Similarly, any between- community edge is drawn independently with the
probability q.

Generating quantitative features To model quantitative features, we
generate a Gaussian distribution at each cluster: its covariance matrix is diagonal
with diagonal values uniformly random in the range [0.05, 0.1] and components
of the cluster center are uniformly random from the interval α[−1,+1]; the real
α controls the cluster intermix: the smaller the α, the closer are cluster centers
to each other. The possibility of presence of noise in data is modeled too, by
uniformly random generation a noise feature. We replicate 50% of the original
data with noise features.

Generating categorical features To model categorical features, we ran-
domly choose the number of categories for each of them from the set {2, 3, ..., L}
where L = 10 for small-size networks and L = 15 for the medium-size networks.
For every k, k = 1, ...,K, cluster centers are generated randomly so that no two
centers may coincide at more than 50% of features. Once a center of k -th clus-
ter, ck = (ckv), is specified, Nk entities i ∈ Sk are generated as follows. Given
a pre-specified threshold of intermix, ε between 0 and 1, for every pair (i, v),
i = 1 : Nk; v = 1 : V , a uniformly random real number r between 0 and 1 is
generated. If r > ε, the entry xiv is set to be equal to ckv; otherwise, xiv is taken
randomly from the set of categories specified for feature v. The closer ε to 1, the
more similar to the center are the entities.

Generating mixed scale features Quantitative and categorical features
are generated in equal numbers independently of each other.

The synthetic data as well as real world data can be found at public site:
https://github.com/Sorooshi/SEANAC/data.

3.3 Evaluation criterion

To evaluate the result of a community detection algorithm, we compare the found
partition with that generated, by using the customary Adjusted Rand Index
(ARI) [5]. The closer the value of ARI to unity, the better the match between
the partitions. If one of the partitions consists of just one part containing all I,
then ARI=0.
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Table 2: Performance of SEANAC on synthetic networks combining quantitative
and categorical features for two different sizes: The average ARI index and its
standard deviation over 10 different data sets.
p q α/ε Small-Size Networks 50% noisy feature Medium-size Networks 50% Noisy features

0.9, 0.3, 0.9 0.99(0.01) 5.00(0.00) 0.99(0.01) 5.00(0.00) 1.00(0.00) 15.00(0.00) 1.00(0.01) 15.00(0.00)
0.9, 0.3, 0.7 0.98(0.03) 5.00(0.00) 0.99(0.02) 5.00(0.00) 1.00(0.00) 15.00(0.00) 0.99(0.01) 15.00(0.00)
0.9, 0.6, 0.9 0.91(0.01) 4.60(0.50) 0.88(0.01) 4.50(0.67) 0.95(0.08) 14.00(1.26) 0.93(0.10) 13.70(1.67)
0.9, 0.6, 0.7 0.86(0.14) 4.80(0.60) 0.88(0.14) 4.80(0.39) 0.84(0.08) 12.10(1.22) 0.81(0.09) 11.80(1.47)
0.7, 0.3, 0.9 0.99(0.02) 5.00(0.00) 0.99(0.01) 5.00(0.00) 0.99(0.01) 14.90(0.30) 0.99(0.01) 14.90(0.30)
0.7, 0.3, 0.7 0.94(0.10) 4.90(0.30) 0.95(0.06) 4.90(0.30) 0.99(0.01) 14.80(0.40) 0.96(0.07) 14.30(1.19)
0.7, 0.6, 0.9 0.74(0.20) 3.80(0.87) 0.73(0.15) 4.20(0.87) 0.56(0.14) 7.80(1.78) 0.55(0.14) 8.10(1.70)
0.7, 0.6, 0.7 0.67(0.14) 4.30(1.10) 0.57(0.14) 3.90(0.54) 0.39(0.09) 7.10(1.51) 0.42(0.08) 7.40(0.66)

4 Results of computational experiments

The goal of our experiments is to test validity of the SEANAC algorithm over
all types of attributed network datasets under consideration. In the cases at
which features are categorical, the SEANAC algorithm is to be compared with
the popular algorithms SIAN and CESNA, which work with categorical features
only.

4.1 Parameters of the generated datasets

We set network parameters, the probability of a within-community edge, p, and
that between communities, q, to take either of two values each, p = 0.7, 0.9 and
q = 0.3, 0.6. In the cases at which all the features are categorical, we decrease
q-values to q = 0.2, 0.4, because all the three algorithms fail at q = 0.6. Feature
generation is controlled by an intermix parameter, α at quantitative features,
and ε at categorical features. We take each of the intermix parameters to be
either 0.7 or 0.9.

We may explicitly insert 50% features that are uniformly random in some
datasets.

Therefore, generation of synthetic datasets is controlled by specifying six two-
valued and one three-valued parameters leading to 192 combinations of these
altogether. At each setting, we generate 10 datasets, run a community detection
algorithm, and calculate the mean and the standard deviation of ARI index at
these 10 datasets.

4.2 Validity of SEANAC

Table 2 presents the results of our experiments at synthetic datasets with mixed
scale features.

One can see that SEANAC successfully recovers the numbers of communities
at q = 0.3 and mostly fails at q = 0.6 – because this corresponds to a counterin-
tuitive situation at which the probability of a link between separate communities
is greater than 0.5. Yet even in this case the partition is recovered exactly when
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Table 3: Comparison: average ARI values and their standard deviation over 10
different data sets for CESNA, SIAN and SEANAC at synthetic data sets with
categorical features. The best results are highlighted using bold print.

setting Small Size Networks Medium Size Networks

p q ε CESNA SIAN SEANAC CESNA SIAN SEANAC

0.9, 0.3, 0.9 1.00(0.00) 0.55(0.29) 0.99(0.01) 0.89(0.05) 0.00(0.00) 1.00(0.00)
0.9, 0.3, 0.7 0.95(0.10) 0.48(0.29) 0.97(0.02) 0.85(0.08) 0.00(0.00) 0.99(0.01)
0.9, 0.6, 0.9 0.93(0.08) 0.32(0.25) 0.96(0.01) 0.63(0.06) 0.00(0.00) 0.99(0.01)
0.9, 0.6, 0.7 0.90(0.06) 0.11(0.14) 0.75(0.12) 0.48(0.09) 0.00(0.00) 0.96(0.03)
0.7, 0.3, 0.9 0.97(0.08) 0.55(0.16) 0.98(0.02) 0.77(0.07) 0.03(0.08) 1.00(0.01)
0.7, 0.3, 0.7 0.89(0.14) 0.51(0.21) 0.87(0.07) 0.71(0.13) 0.00(0.00) 0.99(0.01)
0.7, 0.6, 0.9 0.50(0.10) 0.05(0.09) 0.90(0.07) 0.06(0.02) 0.00(0.00) 0.99(0.01)
0.7, 0.6, 0.7 0.20(0.08) 0.03(0.04) 0.60(0.09) 0.02(0.01) 0.00(0.00) 0.91(0.04)

other parameters keep its structure tight, as say at p = 0.9. Insertion of noise
features does reduce the levels of ARI but not that much. The real reduction
in the numbers of recovered communities, 7-8 out of 15 ones generated, occurs
at the medium size datasets at really loose data structures with p = 0.7 and
q = 0.6, leading to significant drops in the levels of ARI values as well.

The picture is much similar at the cases of quantitative only and categorical
only feature scales - they are left out to shorten the paper.

4.3 Comparing SEANAC and competition

In this section, we compare the performance of SEANAC with that of CESNA
[17], and SIAN [14]. It should be noted that SEANAC determines the number
of clusters automatically, whereas both CESNA and SIAN need that as part of
the input. Table 3 presents our results at synthetic datasets (with categorical
features only, as required by the competition) and Table 4, at real world datasets.

One can see that at small sizes CESNA wins three times (out of 8), and at
all the other cases, including at medium size datasets, SEANAC wins. SIAN
never wins in this table. Moreover, SIAN comprehensively fails on all counts at
medium sizes by producing NaN which we interpret as a one-cluster solution.

We also experimented with a slightly different design for ,categorical feature
generation. That different design sets an entity to either coincide with its cluster
center or to be entirely random. At that design CESNA wins 7 times at the
small size datasets and SEANAC wins at 7 medium size datasets.

At the real world datasets, CESNA never wins; SEANAC wins three times,
and SIAN, two times (see Table 4).

Here, we chose that data normalization method leading, on average, to the
larger ARI values. Specifically, we use z-scoring for normalizing features in
Lawyers data set, HVR data set and COSN data set. The best results on World-
Trade data set and parliament data set are obtained with no normalization. The
network data in Lawyers and HVR are normalized with applying the modularity
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Table 4: Comparison of CESNA, SIAN and SEANAC on Real-world data sets;
average values of ARI and standard deviation (std) are presented over 10 random
initialization. The best results are shown using bold print.

CESNA SIAN SEANAC

HRV6 0.20(0.00) 0.39(0.29) 0.45(0.14)
Lawyers 0.28(0.00) 0.59(0.04) 0.63(0.06)
World Trade 0.23(0.00) 0.55(0.07) 0.23(0.03)
Parliament 0.25(0.00) 0.79(0.12) 0.28(0.01)
COSN 0.44(0.00) 0.43(0.05) 0.50(0.11)

transformation [13]. The network data of COSN is normalized by shifting all the
similarities to the average link value [11].

5 Conclusion

This paper proposes a novel combined data recovery criterion for the problem of
detecting communities in an attributed network. Our algorithm extracts clusters
one by one. This allows us to determine the number of clusters automatically,
whereas other algorithms need the number of clusters pre-specified. Another
feature of our approach is that it is more or less universal regarding the scales
of the data available. On the other hand, SEANAC results may depend on data
normalization.

We experimentally show that SEANAC is competitive over both synthetic
and real-world data sets against two popular state-of-the-art algorithms, CESNA
[17] and SIAN [14].

There should be several possible directions for future work over the data
recovery approach accepted in this paper. First of all, its extension to large
datasets should be proposed and validated. Then the possibility of trade-off
between two constituent data sources, network and fetures, which is explicitly
present in our criterion should be investigated. Yet another direction for future
work shoud be a systematic investigation of the relative effect of different data
standardization methods on the results of our method.
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